Biodiesel Cooperative Vapor Characterization

Biodiesel Cooperative Vapor Characterization

Amount Awarded:
Funding Received:
Project Status:

Executive Summary

The Biodiesel Cooperative is seeking funds to perform a vapor characterization analysis to determine the quantity of methanol vapor released from the Biodiesel Cooperative’s production process.

Characterizing the vapors released from the reactor is important, because the biodiesel conversion involves methanol. Methanol can cause health effects when inhaled. The OSHA permissible exposure limit for methanol vapor exposure is a time-weighted average of 200ppm over an 8-hour period. The Cooperative uses liquid methanol, but since the reactor is heated during the conversion some of the methanol may vaporize during reaction. It is important to know if any of this vaporized methanols is released, because it could have health effects. The Cooperative will also be determining the flammability risk with the vapor. This research has impacts that are potentially broader than just the Cooperative. The vapors released from small-scale biodiesel reactors have not been well characterized. The vapor characterization will help to keep small-scale biodiesel producers like the Cooperative safe.

The characterization will be performed in a temporary lab space allocated to the Cooperative by Engineering Facilities Services for the purpose of the vapor characterization. This project will be done in cooperation with Environmental Health and Safety (EH&S). The ultimate goal of the project is to determine the Cooperative’s lab requirements. Once EH&S agrees to the lab requirements, the Cooperative will be able to find a lab space that meets the Cooperative’s long term needs and insures its viability. The Cooperative will be in a much stronger position to fulfill its main goals after this characterization is complete. It will be able to begin to educate individuals in a small-scale alternative energy production, while also increase sustainability on campus by repurposing a waste stream into fuel for on-campus vehicles

Primary Contact:
Kathryn Cogert