Water is a precious resource, even in the rainy Pacific Northwest, and all of the water that flows through our pipes is potable. This means that every drop used in toilets, sinks, drinking fountains, cooling towers, and reverse osmosis units has been treated to drinking water quality. This treatment process requires vast amounts of energy, and money to maintain the infrastructure and deliver the water. Any waste places an additional burden on these systems but also reduces the amount of water available for any number of purposes.
The University of Washington has taken great steps to reduce water consumption throughout campus by installing low-flow toilets, sinks, and showers. But there are other areas where excessive water is used and consequently wasted. Our project has identified and seeks to resolve one of these problems.
Currently, the Reverse Osmosis (R/O) unit in the BB tower of Magnuson Health Sciences building consumes approximately 300,000 gallons of potable water, annually, to provide the facility’s various purified water needs. However, at optimal conditions only 75-80% of the incoming potable water is usable. Each year approximately 90,000 gallons is discarded as wastewater, also known as reject water. Reject water is clean for industrial purposes but is not fit for human consumption.
In addition to this waste, the buildings cooling tower, which is in the same room as the R/O unit, consumes nearly 100,000 gallons of potable water each year. As a result our project expects to mitigate the consumption of nearly 90,000 gallons of potable water each year. This is enough water to provide for the drinking water needs for nearly 500 people for a whole year, every year.