Engineers Without Borders Sol Stations

Executive Summary:

The Local Projects sector of the University of Washington Chapter of Engineers Without Borders (EWB) will design phone charging stations powered by solar energy. Once the design is complete these stations will be implemented throughout the University of Washington Seattle campus, in convenient locations such as near bus stops and outdoor seating areas. The goal of this project is to provide sustainable, convenient charging for students and to illustrate how clean, renewable energy can power student lives.

The first part of the project will be a research and development phase. Our team will begin by creating an electronic design of the system with mathematical equations and measurements. There will be two main designs, the first being an electric system consisting of a battery, a solar panel, and a charge controller to regulate the amount of charge for students phones to work properly. The other design will be of the station itself, consisting of a locking metal box to enclose the electric system, with the solar panel on top, which will be covered by weatherproofing. Once our team and mentors (mentors consisting of Rebecca Neumann and Faisal Hossain) have approved the design we will move onto development. We want to make the most efficient, viable design possible, therefore we will build our first unit and run tests to make sure it works. Once that is completed we will implement the first unit on campus to gather data on use and effectiveness. This will help us determine where to build the next stations so they will be most useful and effective. This information, along with discussions between us and campus entities described in project approval, will help us to find the most viable on campus locations.

As engineers, we want to develop the best possible units. It will cost $1,830 to build one unit. Our student outreach and education team will also complete surveys and do research to find the most optimal locations for charging stations, and the most useful aspects of system for students. Once all of the research and development is completed our team plans on building 8 charging stations and the total will be $14,640. This, with $200 for any unforeseen maintenance costs, will have a grand total of $14,840.

Student Involvement:

Student Roles

Maeve Harris is a second year Civil and Environmental Engineering student. As our Project Lead, she will be responsible for ensuring the project moves along according to our timeline and budget. She has also been the lead on communicating with officials on campus, in order to attain project location approval. Maeve is excited to apply her classroom engineering experience to the design and construction of our solar powered charging station.

Brian Bednarski will be completing his Electrical Engineering degree in the spring. He has experience designing and building solar powered electric car charging stations. His previous experience makes him a valuable asset to the team as we design and protocol the electrical system.

Connor Kafka is a second year electrical engineering student. He was recently the lead on designing the electrical system for a solar powered kiln, which is located on campus. Connor will be contributing to the design and construction of the electrical system.

Mike Barsamian is in the final stages of completing his Mechanical Engineering degree. He will be assisting with the design and construction of the solar powered charging stations.

Chester Pham is a third year Chemical Engineering major. Last year he was the treasurer of the UW Engineers Without Borders chapter, and this year is our Vice President. This makes him more than qualified to be our Logistics Manager. As Logistics Manager, Chester will be responsible for purchasing materials, and keeping our budget on track.

Brittany Lydon is a senior in Mechanical Engineering. With her mechanical engineering background, she can help with design and construction of the charging stations. Brittany will also be in charge of Education and Outreach. She is enthusiastic about involving the entire UW campus through education and outreach.

Espen Scheuer is a first year student. His intended major is Material Science and Engineering. Espen is very interested in solar panels, and has become the lead during our research stage. He has been researching solar panel design and construction and relaying that information to the team as we enter the design phase.

Emily Rosenfield is a first year, undeclared, student. She will be assisting Brittany Lydon with the Education and Outreach aspect of this project, as well as helping to complete general team tasks.

Abby Snyder is a first year student. Her intended major is industrial engineering. Abby will be assisting Brittany and Emily on the Education and Outreach Team. Abby will also be the safety officer, making sure each student uses equipment safely and effectively. She will complete a safety talk before construction of the stations begins.

Tyler Petrie is a first year student. She is intending to major in electrical engineering and will be assisting to design the electrical system. Tyler also works for The Daily and will be a major contact between our project and the newspaper.

As necessary, we will recruit student engineers from outside of the club to assist with design and construction. We would likely do this by emailing professors and visiting the classrooms of upper level engineering courses in order to find students who would be interested in working on this project.

Sub Teams

The Electrical Team will be responsible for designing and building the electrical system of the solar powered charging station. They will be doing work necessary circuit work to have them running smoothly. This work can be completed in the Electrical Engineering Building.

The Mechanical and Civil Team will focus on overall design and construction. They will be working on the energy tree, and solar panels to make sure all the parts of the design fit together in a functional and efficient way. This team will also be in charge of all the weatherproofing and casing of the system.

The Education and Outreach Team will be in charge of communicating with the UW campus. They will put together surveys to be completed by UW students and faculty in order to identify preferred charging locations. Also, they will be in charge of any events or social media promotions that are done to raise awareness about this project. This team will design an educational poster to have on the completed charging station so that students can read about sustainability while their phones charge.

The Task Force Team is responsible for keeping all members of this project accountable and to make sure the project proceeds according to schedule.

An Analysis Team will be needed to record data on the amount of phones charged and electricity saved. They will also be in charge of monitoring the condition of our stations, making upgrades and replacing parts as needed.

Volunteer Opportunities

All of the students participating in this project are volunteering their time. Students will be donating about three to five hours a week to this project through group meetings and design work. This project provides a valuable opportunity for students to volunteer and gain engineering experience. We are also currently accepting additional members to the club to work on the project and are open to any interested volunteers.

Conclusion

While everyone involved in this project has different engineering interests, it is a collaborative environment that gives students a fantastic opportunity to gain experience across a wide range of engineering fields. The students will also gain valuable collaborative skills to prepare them for the engineering workforce.

Education & Outreach:

How will the UW community find out about your project?

The UW community can find out about the solar stations through several different mediums, ensuring we are reaching as many people as we can. We plan to advertise the charging stations in a green way by using technology to our advantage. We will request to send out a student-wide email about the charging stations with supplemental information on how to get more involved with making the campus green. We also plan to put the news of the charging stations on our EWB Facebook page and request to post it on the UW Sustainability or UW Campus Sustainability Fund Facebook pages. We will also reach out to the UW Sustainability Twitter page so as to inform more people.

Another outlet we will utilize for advertising is physical media including using the campus newspaper, The Daily. We will request an article and/or advertisement about the charging stations so as to spread the idea of a greener campus. To provide the community with information about the charging stations, we will put up an information panel on each charging station that has detail of the station itself as well as information on how to get involved in sustainable projects in the future. The panels will have Engineers without Borders’ contact and Facebook information, the contacts for the College Sustainability Fund and any other sustainability group who wants their information advertised. To make the panels more personal, we can include shorts summaries about each of the Engineers without Borders’ projects.There will also be a power meter on the charging station  to display how much power is being used at that time, similar to the meters on the water fountains counting the amount of bottles filled. We can also put flyers up in coffee shops, the District Market, Local Point, The 8, The HUB, Suzzallo Café and other high-traffic areas around campus to maximize exposure.

By using a combination of these mediums, we plan to reach as many students as we can to inform them about this project, and also to get involved in its development.

How will the UW community get involved in and/or support your project

We are planning to get the community involved in this project throughout its development, but are also are planning to continue advertising and promoting the importance of green energy and a sustainable campus long after this project is completed. Several phone charging projects using solar energy have been very successful on campuses across the country. Currently Brigham Young University is also creating a similar project for charging phones for their campus and public places. The University of Houston made solar-powered cell phone charging stations in 2015 for their campus, and experienced extremely positive results. Likewise, the University of Miami had a similar idea which became very popular with their students. These previous examples have shown that the solar panel charging stations will be widely used and appreciated by the students on campus. We plan on creating our own legacy with the three steps described below.

Step 1: Reach out to other sustainability groups on campus in the planning and advertising of the project

There are many groups on campus that focus on sustainability including Earth Club, SEED, EcoReps, and Green Husky Coalition. We can approach these groups asking if they want to get involved and promote this project. This will open the project to more students on campus with different areas of experience which will allow for a broader range of ideas when developing this project. We believe that this input from other groups is very important because there could be non-technical aspects and concerns that we, as engineers, may have not considered. Working with these groups will ensure a lasting, sustainable impact on campus.

We will also consider conducting an online survey to students on campus to make sure we address the needs and wants of the students. This input is vital because we want to make sure our ideas accurately represent the concerns and mindset of the students who will be using these charging stations.

Step 2: Continue sustainability outreach to campus after project is completed

One of the best ways for the community to get involved with this project is to continue the efforts for building a sustainable campus even after this project is completed. We plan on having posts at each station with information on the project itself and also ways to get involved with sustainable projects around campus. There will be a list of people or groups to contact for those who are interested in creating a more sustainable campus.

Step 3: Reach out to younger students from schools around the area to teach them the importance of sustainability

This project has the unique opportunity of spreading awareness of sustainability beyond the UW campus because EWB has experience with STEM outreach in middle schools around the area. We plan to use that experience to widen the awareness of this project. We have gone to local middle schools to expose them to the STEM field and attempt to show the students the positive impact STEM can have on communities. We plan to continue this outreach and using this project to teach younger students in the Seattle area the importance of sustainability and green energy in the STEM field. By reaching out to younger students, we hope to create a sustainable mindset and culture that will perpetuate throughout schools all around the area. To do this, we will both visit schools and use the project to show the potential of integrating green energy in everyday lives. We will also try to set up trips where students can come up to campus to see the power stations and learn about how the project was developed. This potential for outreach and broader impacts makes this project uniquely beneficial for communities all over the Seattle area and can result in creating a culture of sustainability and environmental awareness.

Environmental Impact:
  • Energy Use
Project Longevity:

Engineers Without Borders is a longstanding club at UW. International Projects last at least 5 years so EWB has a record of continuity with projects and communities. As a chapter of EWB we will finish our project and have a written analysis of the project describing how the goals have been met. As part of EWB’s mission we will not only finish this project, but also keep it running sustainably. Our organization will take responsibility of the long term management and maintenance of our project through our established Local Projects Team. We will include a committee within this team to oversee the management and maintenance of our charging stations. We will provide funding for maintenance of our project through our large fundraising efforts and set aside funds in our yearly budget for this purpose. We understand that parts of our design such as the battery and solar panels will have to be replaced around every decade or less depending on use. Some of these costs are requested for in the budget. Other costs can be funded through our club as long as the charging stations are still in use on campus.

Environmental Problem:

Busy college students on-the-go need to use their phones for work and to keep track of their lives. Having a convenient way to charge these devices is critical to student success. Meeting this need for immediate power with clean energy is not only beneficial for students, but also the environment. In addition, having students seeing and using clean energy provides a great opportunity to promote sustainability.

Our project will provide students with immediate access to charging power in areas on campus where there are no outlets such as at bus stations, and also promote clean energy and help students to see and learn about clean energy while in between classes. Students and visitors alike are reliant on energy for using cell phones. Outdoor areas do not have the infrastructure needed to meet the energy needs of our students. This system can provide for this need while promoting renewable energy and improving areas of campus that may be underutilized.

As a part of our education and outreach we will be designing a system that will record how many times the charger has been used. It will also have the total amount of clean energy that was used in place of power drawn from the grid.

In order to minimize waste, we will choose a suitable battery that can be easily recycled. Currently, we are considering a sealed AGM battery which lowers hydrogen emissions. Other benefits of this battery include that they don’t need to be filled up with water, they are better in closed spaces, and if they break they don’t leak liquid. They can be recycled, reused, and last approximately 5 years. We are also using solar panels which can last about 10 or more years. We plan to buy our panels from the solar panel companies, either REC Solar or Sun Power which have good reputations for sustainable manufacturing. As this project is focused on sustainable energy sources, where we buy is especially important to our team. Buying from a company which emphasizes sustainable manufacturing practices will ensure that the environmental impact is minimal and the energy saved from our charging stations is as large as possible.

The rest of the electrical system will be designed to last indefinitely and will need minimal repairs besides replacing the battery and panels. While evaluating suppliers to purchase from, we will factor in the means of production and materials used and their environmental impacts. A small part of our funds will be allocated to maintenance repairs. Repairs and maintenance of all the stations will be done by our Engineering Without Borders, Local Projects Team. The UW EWB chapter has consistently been active since 2005, it will remain active long after the installation of these charging stations. Maintaining and repairing the charging stations will always remain a priority for EWB’s Local Projects Team.

Explain how the impacts will be measured:

Our team plans on having a device attached to each of the stations outlining the amount of power being produced by each station using the solar power. Similar to the water bottle fillers that count the number of plastic bottles averted, there will be a meter counting the number of phones charged by the station, as well as the electricity saved in kWh. This is an important piece of the project because it engages the user, by showing him or her the energy saved when they choose to charge a phone from a renewable energy source.

The Analysis Team will periodically check in on the project by measuring data and analyzing results. In this way we will be able to keep track of electricity saved. We will also be monitoring how frequently the stations are used.

We are analyzing our impact by completing a life-cycle analysis, looking at the “cradle to grave” system. This will ensure that the project will have a sustainable life span and when parts no longer work they are recycled and replaced by new working parts. Our research team as vetted the Solar Company, Sun Power, which focuses on sustainability and has won “Cradle to Cradle” certification. They are the first and only solar company that has that distinction. Our focus is to promote sustainability on campus so we need to measure and analyze ourselves for sustainable practices.

The solar panels will be on bus stops or near the HUB’s outdoor seating so no extra land will be needed for the solar panels.

Total amount requested from the CSF: $14,840
This funding request is a: Grant
If this is a loan, what is the estimated payback period?:

Budget:

ItemCost per ItemQuantityTotal CostComments
High Capacity Lipo Battery Pack (20 Ah)$2502$500
Solar Panels (100W) $3001$300
Microcontroller / power management$801$80
Printed Circuit Board / voltage divider$501$50* Can order for same price in sets of 3-4
Wiring, cabling, charge ports, connectors$100n/a$100* Will only need to purchase once in bulk
Analog Circuitry$20n/a$20
System stand$3001$300
Weatherproof casing$1001$100
Panel/turbine mount$2501$250
Bolts and concrete adhesive$301$30
Arduino voltage stats, etc.$1001$100
Total per unit: $1,830.00
Each Unit Multiplied by 8$1,830.00*8Total:$14,640
Plus $200 for unforseen maintenence$1,830.00+$200Total:$14,840

Non-CSF Sources:

Project Completion Total: $14,840

Timeline:

TaskTimeframeEstimated Completion Date
Electrical Design/Station Design Beginning of February to End of March March 31st, 2017
Surveying of Students for Optimal Locations and beginning outreach End of March to End April April 20th, 2017
Meetings and Decisions on Location of Stations End of March to End of April April 20th, 2017
Buy MaterialsEnd of March March 31st, 2017
Prototyping and Building of First UnitEnd of March to End of May May 26th, 2017
Installation of First UnitEarly JuneJune 2nd, 2017
Monitoring of the System and More Surveys on Student Use and Effectiveness Throughout JuneMay 19th, 2017
Building of the 7 Stations Throughout the Summer and into the Fall October 20th, 2017
Implementation of the 7 StationsEnd of October to Early December December 4th, 2017
Promotion of the ProjectThroughout Fall Quarter 2017December 14th, 2017
Monthly Promotion of Sustainable Ideals on the Stations Throughout the end of 2017 and into the future Unknown